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Abstract. The light deflection phenomenon is studied in ammonium pentafluoro antimonate
(APFA) crystals versus the laser beam incidence related to the twinned sample. The variations of
the orientation of the deflected beams, as well as of their polarization are measured and theoretically
explained. A simplified model allows one to establish analytical relations between the deflected
beam angles (α andβ) and the measured optical properties of the crystal. With a normal light beam
incident on the sample, a linear dependence between sin2 α and the birefringence is theoretically
and experimentally demonstrated, which is interesting for further research and applications.

1. Introduction

The light phenomenon called deflection occurs when a laser beam crosses a polydomain
ferroelastic or ferroelectric–ferroelastic crystal due to the orientation difference of optical
indicatrices in the adjacent domains. The light deflection was first observed in Rochelle
salt (Tsukamotoet al 1982), then in Gd2(MoO4)3 and Bi4Ti3O12 (Tsukamotoet al 1984),
RbHeSeO4 (Tsukamotoet al 1983, Tsukamoto 1984, Salvestriniet al 1997, Guilbert
et al 1998), KH3(SeO3)2 and NaH3(SeO3)2 (Tsukamotoet al 1985), lithium ammonium
tartrate monohydrate (LAT) (Koralewski and Szafranski 1989, Szafranski 1992) and sodium
ammonium tartrate tetrahydrate (NAT) (Szafranski 1992, Koralewski and Szafranski 1988).
A remarkable study was been accomplished by Meeks and Auld (1988) with the purpose to
develop optical and acoustical devices with neodynium pentaphosphate crystals. A review
was published in 1993 (Tsukamoto and Futuma 1993). More recently light deflection has
been used to detect a phase transition existence in KD3(SeO3), but the phenomenon can be
mingled with the classical Frauenhofer diffraction by the domain texture (Hill and Ichiki 1964,
Hill et al 1965). Light deflection has also been used to derive the orientation of a phase
boundary in KHCO (Kinoshitaet al 1994, Legrandet al 1998) and also in chiral smectic
liquid crystals (Hatanoet al 1993, Veharaet al 1996). The light deflection phenomenon is
described in figure 1 in the simplest case, where only a permissible wall orientation appears
in the crystal. The largest face of this plate-shaped sample is perpendicular to the domain
walls. A nonpolarized laser beam hits the plane perpendicular to the domain walls and to the
largest sample face. After crossing the multi-layered sample, six transmitted beams can be
observed, as in figure 1(b). The direct (undeflected) beam D and the reflected beam R are
non-polarized. The other beams are linearly polarized with the same polarizing plane of A
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(a) (b)

Figure 1. Schematic illustration of the light deflection by a textured ferroelastic crystal. (a) The
incidence angleαi equals zero. Except for the transmitted beam, two deflected beams are observed
with α0 value for the deflection angle. (b) The incidence angleαi is greater thanαcri = α0 and six
transmitted beams are observed.

and A′ perpendicular to the polarizing plane of B and B′. If the incidence angleαi is smaller
than a critical valueαcri , only the D, R, A and A′ beams are observed and this is obviously
the case whenαi equals zero as shown in figure 1(a). Then the angle between the A and A′

beams and the normal to the largest sample face equals a characteristic valueα0. The intensity
of the deflected beams changes with the number of the domain walls and with the optical
properties of the crystal. The variation of the deflected beam intensities with the number of
walls has been qualitatively demonstrated (Tsukamotoet al 1984) and the modification due to
the indicatrices’ orientation has been clarified only in the Rochelle salt (Tsukamotoet al1982).
The polarizing directions of the deflected beams were studied in RbHSeO4 crystals especially
(Tsukamotoet al 1984). Finally, the variation of the deflected beam orientations versus the
incidence angle of the laser beam has often been studied. However, the total range 0–90◦

for the different angles is seldom explored. Furthermore, some discrepancies seem to exist
between the experimental results and the numerical calculations, especially in Gd2(MoO4)3
(GMO).

The purpose of the present paper, numbered I, is to firstly measure the deflection angles
for αi variation between 0◦ and 90◦ with a good accuracy for samples with different optical
indicatrice orientations related to the domain walls; the crystal selected is(NH4)2SbF5 (APFA).
Secondly an analytical model is proposed to describe the variation of the deflected beams
orientation versus the incidence angle and the optical properties of the crystal. A simplified
model allows one to understand the relative importance of the birefringence and of the tilt angle
between neutral lines of the optical indicatrices and the domain walls. This model could be
useful for fundamental studies and applications as discussed in the last section. The following
paper (Staniorowski and Bornarel 2000) demonstrates, with the help of results obtained in GMO
crystals, the better accuracy of the method compared to that using the Huygens construction.

2. Experimental details

2.1. Crystal and samples

The APFA single crystals were grown by slow evaporation of aqueous solutions of
stoichiometric quantities of NH4F and SbF3 with a small excess of H at 300 K. The crystal
symmetry is orthorhombic (space groupCmcm) (Udovenkoet al1987, Waskowska and Czapla
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Figure 2. Positions of the optical indicatrices section in adjacent domains. The two permissible
walls are observable in this (001) section.

1989, Czapla and Dacko 1994). Good quality crystals with a volume of 0.2–0.3 cm3 were
obtained during the four weeks of growth. This quality is checked by optical observations and
dielectric property measurements (Bornarelet al1997). The samples are obtained by cleavage
in the (010) plane, then cut with a parallellepipedic shape in orthorhombic planes with a
wire saw and polished with a wet silk cloth. The thickness of the samples in theb-direction
is 1 mm. Previous experiments performed with similar samples allowed us to clarify the
transitions where NH+4 ions play a great role, as demonstrated by nuclear magnetic resonance
(NMR) and neutron scattering studies especially (Avkhutskiiet al 1983, Nakamura 1986,
Mukhopadhyayet al 1991, 1993). The existence of two phase transitions is demonstrated at
temperatures 293 K and 169 K. The second order of the 293 K transition is established; the
continuous character of the 169 K transition remains a more open question. APFA crystals
exhibit a ferroelastic transition at 293 K between an orthorhombic phase and a monoclinic
low-temperature phase (space groupC2/c) (Udovenkoet al 1987). Two permissible walls
are possible in the (100) and (010) planes of the orthorhombic phase. In a (010) section, the
angle 2φ between the axes of the optical indicatrices in two neighbouring domains equals 6◦

in a temperature range of 170–293 K for the first domain family illustrated in figure 2. In the
second domain family this angle is 174◦, i.e. 180−2φ◦. The domain texture changes with the
temperature: the domain wall density decreases with the temperature and only one orientation
of the domain walls is usually observed below 200 K (Bornarelet al 1997).

2.2. Experiment set-up

Two different optical arrangements were used. Near room temperature the experiments are
performed with the help of a goniometer, which was built in the laboratory. It is possible, using
a He–Ne, 632 nm laser as a light source, to rotate the sample with regard to the incident laser
beam step-by-step with an accuracy of 0.05◦. The angle of deflection is determined by the aid
of an automatically-rotated photodiode with the same accuracy. However, the repartition of
the intensity of the deflected beams allows an accuracy on the deflected anglesα andβ equal
to 0.2◦ at room temperature.

The optical measurements versus temperature are performed using a cryostat with a
helium–gas exchange chamber, which allows optical observation and measurement along
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three perpendicular axes. The thermal gradient in the helium–gas chamber was controlled
with the help of two platinum resistors placed just above and below the sample; the smallest
thermal gradient can be 5 mK mm−1. The temperatureT reported is that of the low platinum
resistor, which was measured with a precision of 2× 10−3 K. All of the given results against
temperature correspond to heating cycles with a temperature rate lower than 10−2 K min−1.
These conditions allow us to obtain reproducible results (Bornarelet al 1997). The optical
measurements of the angleφ and the polarization orientation are performed with an accuracy
of 0.2◦ and the Śenarmont method allows an accuracy equal 2× 10−6 for the birefringence
measurements.

3. Results

Several APFA samples (b plates) with similar shape and thickness were studied at 290 K.
They exhibit domain textures with mean domain width of a few micrometres (Bornarelet al
1997). Figure 3 shows the results corresponding to a sample region with domain walls in the
(001) planes called APFA1 walls. The dependence of the anglesα andβ, the deflection angles
corresponding to the A and B rays, respectively, is given against the incidence angleαi . The
α(αi) andβ(αi) curves are well separated and the critical valueαcri equal 9.1◦ as theα0 value.
The orientation of the polarization of the A rays is perpendicular to that of the B rays. Both
remain unchanged whenαi changes between 0–90◦.

Figure 3. Variation of theα andβ deflected angles againstαi for the APFA1 domain walls. The
experimental results for theα ( ) andβ (�) angles, calculated values by the general model (full
curve) and by the approximated case (broken curve) are shown.

Figure 4 shows the results corresponding to domain walls in (100) planes, called the
APFA2 walls. The values ofαcri andα0 appear to be similar to those obtained for APFA1
walls, but the curvesα(αi) andβ(βi) seem to cross each other in figure 4(a). The polarization
of the A and B rays is always measured during the experiment and is given in figure 4(b). The
polarization of these two rays is always perpendicular and in practice an exchange appears
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(a)

(b)

Figure 4. Variation of the (a) α andβ deflected angles and (b) deflected rays’-polarization against
αi for the APFA2 domain walls. The definitions of the symbols and curves are given in figure 3.

aroundαi equal to 35◦, even if it is difficult to follow them in the 30–40◦ range because of the
weak intensity of the deflected beams (a few per cent of the incident intensity).

The optical measurements performed during a heating cycle are summarized in figure 5.
The variation of the tilt angleφ against the temperatureT illustrates clearly the two phase
transitions at the temperatures 293 K and 169 K (see figure 5(a)). Figure 5(b) gives the
variation of the A raysα0 angle againstT and the intensityIA of this beam is given, in
arbitrary units.

In figure 5(c), the variation of the birefringence for a light propagating along theb-axis
δ(1nb) is drawn againstT during a heating cycle and a cooling cycle. These results are very
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(a)

(b)

(c)

Figure 5. Variation of (a) φ(T ), (b) α0 and intensityIA(T ) for the A rays during heating cycles,
and (c) δ(1nb)(T ) during heating (◦) and cooling (◦) cycles against temperature.

reproducible, even for relatively high-temperature rates (up to 0.25 K min−1) which demon-
strates the good quality of the thermal measurements and the absence of a thermal hysteresis,
with 0.1 K uncertainty. All of the results presented above are discussed in the next section.
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4. Discussion

Let us first study the variation of the deflected angles (α andβ) on the incidence angleαi
quantitatively. To determine the path of beam across the crystal, three steps must be considered:
the refractions on the incident sample face, the reflections and refractions on the domain walls
and the refractions on the exit sample face. It is necessary to compute the optical slowness
surfaces or index surfaces of light by solving the eigenvalues of the general wave equation,
starting from Maxwell’s curl equations. The resulting surface consists of two sheets since
there are two allowed indices from each direction of propagation. Figure 6 shows these
surfaces with as the coordinate axesx, y andz, the principal axes for the susceptibilityχ
and the orthorhombic axesa, b andc, respectively. In these coordinatesχ is diagonal, with
three different diagonal elements. The surfaces drawn in figures 6(b) and 6(c) correspond,
for APFA, to the following values of the optical indices:na = 1.5266, nb = 1.4703,
nc = 1.5178 (Andriyevskiet al 1995). However, the propagation direction in the incident

(a)

(b) (c)

Figure 6. (a) Principal axes for the susceptibilityχ : x, y, z; domain walls and incident planey′z′.
(b) and (c) Index surfaces in APFA with incident plane corresponding to APFA1 walls and APFA2
walls, respectively.
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plane is perpendicular to the domain walls’ direction as illustrated by figure 6(a): these planes,
which correspond to the orthorhombic planes, make the angleφ with the optical planes.

The properties of optical wave propagation are described by the section of the slowness
surface in the incidence plane. The easiest way is to rotate the coordinate system of the
susceptibility tensor byφ around they-axis and then setkx ′ = 0, i.e. thek vector is always
inside the incidence plane. The propagation equation becomes

(
ω

c0

)2

(1 +χ ′11)− k2
y ′ − k2

z′ 0

(
ω

c0

)2

χ ′13

0

(
ω

c0

)2

n2
2 − k2

z′ ky ′kz′(
ω

c0

)2

χ ′13 ky ′kz′

(
ω

c0

)2

(1 +χ ′33− k2
y ′)




Ex ′

Ey ′

Ez′

 = 0 (1)

with

1 +χ ′11 = n2
1 cos2 φ + n2

3 sin2 φ

1 +χ ′33 = n2
1 sin2 φ + n2

3 cos2 φ

χ ′13 =
sin2 φ

2
(n2

1 − n2
2). (2)

The desired section of the slowness surface is described by a bi-quadratic equation fork/ω. It
consists of two branches, described by the two following solutionsk1/ω andk2ω as shown by
Meeks and Auld (1988):(
k

ω

)2

1,2

=
(
n2

2(1 +χ ′33) + sin2 θ [(1 +χ11)(1 +χ33)− χ ′213] + (1 +χ ′11)n
2
2 cos2 θ

2c2
0(n

2
2 cos2 θ + (1 +χ ′33) sin2 θ)

)

± 1

2c2
0(n

2
2 cos2 θ + (1 +χ ′33) sin2 θ)

× {[sin2 θ(χ ′13)
2 − (1 +χ ′33)− (1 +χ ′11)n

2
2 cos2 θ − n2

2(1 +χ ′33)]

− 4[n2
2 cos2 θ + (1 +χ ′33) sin2 θ ][(1 +χ ′11)(1 +χ ′33)n

2
2 − n2

2χ
′2
13]}1/2 (3)

whereθ is the angle between theEk vector and the domain wall as shown in figure 6(a) and the
indices 1, 2 and 3 correspond tox, y andz as usual.

The relations (2) and (3) allow us to calculate the solutionk/ω as a function ofθ , the angle
betweenEk and they-axis. Slowness section curves in thez′y ′ plane illustrate these solutions,
as in figure 7(a) for the domain A and the domain B. Let us note that slowness curves for the
opposite domain state are obtained by rotating the susceptibility tensor byπ round theb(y)
crystal axis. The results of this rotation is to changez′ into−z′ andy ′ into−y ′. This result
changes the sign ofχ ′13. However, there is no change in the slowness section curves since
χ ′13 appears only as a squared term in relation (3). Hence, the slowness section curves are
mirror symmetric about thex ′y ′ plane (the domain wall) as shown in figure 7(a). In general,
the curves representing mode 1 (the slow wave) and mode 2 (the fast wave) are complicated
ovaloides. The implications of this mirror symmetry are interesting in the prediction of the
refracted and the reflected wave on the domain wall using the conservation of thek projection
in the boundary (the domain wall) (Yariv and Yeh 1988). For example, figure 7(a) shows that
an incident wave of the outer mode polarization (mode 1)k

(1)
i /ω will phase match into four

waves, two refractedk(1)t /ω andk(2)t /ω and two reflectedk(1)r /ω andk(2)r /ω.
The incident wave of the inner mode (mode 2)k

(2)
i /ωwill also phase match into four waves

k
′(1)
t /ω, k′2t /ω, k′(1)r /ω, k′(2)r /ω. If the two incident polarizations are contained in the same beam
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(a)

(b)

Figure 7. (a) Optical slowness curves for ax′y′ domain wall showing mirror symmetry and (b) the
three steps for the wave propagation: refractions on the incident sample face and the exit sample
face, refractions and reflections on a domain wall.

then two of the transmitted and two of the reflected waves will very nearly coincide. The result
is that one sees a total of six waves (as in figure 1(b)) instead of eight. Similar slowness section
curves can be drawn at the sample boundaries as shown in figure 7(b). Finally, it is possible
to obtain relations as follows:

ω

c0
sinαi = k(1)i (θ ′1) sinθ ′1 = k(1)i cosθ1

= k(2)i (θ ′2) sinθ ′2 = k(2)2 cosθ2 (4)

k
(1)
i sinθ1 = k′(2)t sin(θt2)

k
(2)
i sinθ1 = k′(1)t sin(θt1) (5)
ω

c0
sinα = k(1)t cos(θt1)

ω

c0
sinβ = k(2)t cos(θt2) (6)

and to also calculateα(αi) andβ(βi) using equations (1)–(3). The calculated variations are
plotted in figures 3 and 4(a) (full curves) and appear in good agreement with the experimental
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Figure 8. Constructions of theEk wave vectors which correspond to the mode (m2) of the wave
after the refraction across the incidence face of the sample. TheEk vectors corresponding to rays A,
A′,D and D′ at the exit face are indicated.

data. These numerical calculations give good results, but it is interesting to obtain even
approximated analytical relations, allowing one to show the optical parameters’ ageing on the
α andβ variations more clearly. Let us suppose, for example, that the intersections between
the index surfaces and the incident plane are ellipses in a primary approximation and consider
the Ek vectors in the three steps illustrated in figure 8. In this figure, theEk vectors are parallel
to the light rays only in the vacuum, out of the crystal. This is not the case inside the sample.

The primary incident light beam impinges on the sample face with incident angleαi .
The wave crosses this face and divides into two extraordinary waves, two different modes m1

and m2 corresponding to optical indicesn1 andn2, and to anglesθ ′1 andθ ′2 for thek vectors,
respectively. For the modem2, it is possible to write the relation:

n2 sinθ ′2 = n0 sinαi (7)

wheren0 is the vacuum optical indice.
Then the wave (m2) impinges a domain wall and is resolved into four secondary waves,

namely m2 and m4 for the refracted waves and m′2, m′4 for the reflected waves. Due to the
conservation of the tangent part of the wave vector and to the same shape of the index surfaces
in both domains, the wave (m2) crosses the domain wall without modification in theθ ′2 angle.
In contrast, the orientation of the wave vector corresponding to the mode m4 is given by

n4 cosθ ′4 = n2 cosθ ′2 (8)
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and this wave (m4) corresponds, after refraction across the exit face of the sample, to

n4 sinθ ′4 = n0 sinα. (9)

From simple geometrical examinations using the equations of the ellipses shown in figures 6(b)
and 6(c) it is possible to writen2 andn4 as follows:

n2
2 = n2

c +

(
1− n

2
c

n2
b

)
sin2 αi (10)

n2
4 = n2

c + n2
v −

n2
vn

2
c

n2
a

+

(
n2
vn

2
c

n2
bn

2
a

− n
2
c

n2
b

)
sin2 αi (11)

with

nv = nanc
[

1 + tg2φ

n2
c + n2

atg
2φ

]1/2

. (12)

Using relations (7)–(12), it is possible to obtain the variation ofα againstαi in the presented
case corresponding to APFA1 wall:

α = ±arcsin

[
1 + tg2φ

(n2
a/n

2
c)tg

2φ + 1

(
n2
a − n2

c +
n2
c

n2
b

sin2 αi

)]1/2

. (13)

This equation possesses two real solutions for eachαi value, which correspond to the A and A′

rays’ orientations. Using values previously given forna, nb andnc (Andriyevskiet al 1995),
it is possible to draw the curveα(αi) for the APFA1 wall as shown in figure 3. In the same
way as the previous calculation performed for wave m2, one proceeds in the case of wave (m1)
and obtains, for the APFA1 wall,

β = ±arcsin
nb

nc

[
(n2
a/n

2
c)tg

2φ + 1

1 + tg2φ
sin2 αi + n2

c − n2
a

]
. (14)

The curveβ(αi) corresponding to the relation (14) is also drawn in figure 3 (broken curve).
Figure 9 gives the difference between the experimental values and the theoretical values for
α(αi) andβ(αi) as well as the difference between the approximated model and the general
case. It is possible to note that the accuracy of the experimental data is not very good (with
an uncertainty between 0.1◦ and 0.5◦) when the deflected beam is close to the undeflected
beam D, i.e. for smallαi values. The uncertainty is, obviously, also important when theα(αi)

andβ(βi) curves present horizontal or vertical tangents. In contrast the approximated model
gives very good results forα(αi), except in the vertical tangent region. The differences are
comparable to the experimental uncertainty forβ variation in all of theαi range.

The same approximated calculations can be performed in the APFA2 wall situation and
the following relations are obtained:

α = ±arcsin
nb

na

[
(n2
a/n

2
c)tg

2φ + 1

1 + tg2φ
sin2 αi + n2

a − n2
c

]1/2

(15)

β = ±arcsin

[
1 + tg2φ

(n2
a/n

2
c)tg

2φ + 1
(n2
c − n2

a sin2 αi)

]1/2

. (16)

These approximated relations correspond to the broken curves in figure 4(a), whereas the full
curves correspond to the general calculation. The quality of the approximation can be easily
appreciated. The curves drawn with relations (15) and (16) cross each other at the valueαi =
35.86◦, but it is only the result of the model. It is not possible to measure real deflected beam
intensities near this value ofαi due to the proximity of the deflected beams A and B and the D
beam and, also, to their small relative intensities. However, figure 6(c) allows one to understand
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(a)

(b)

Figure 9. The difference between the deflected angles calculated by the general model and the
experimental data ( ), and the approximated model (full curve): (a) = 1α(αi), (b) 1β(αi).

the results obtained in figures 4(a) and 4(b): for the APFA2 walls in the defined experimental
conditions the incidence planey ′z′, which is perpendicular to the domain walls, is close to the
optical principal plane containing the optical axis. The two sheets of the index surface cross
each other only in the optical axis plane. Then the A and B beams do not really cross around
αi = 35◦. In contrast the polarization of the light in these regions rotates, as illustrated on
figures 4(b) and 6, whenθ changes i.e. whenαi changes. Obviously, it is possible to predict this
rotation of the light polarization using relation (1) for each orientationθ of theEk vectors. These
results demonstrate the interest of the deflected beam measurements (α(αi),β(αi) and light po-
larization) to easily obtain information on the optical properties of the crystal which is twinned.
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Figure 10. Variation of the deflected anglesα (�) andβ ( ) against the tilt angleφ in the case of
APFA1 walls withαi = 15◦.

Figure 11. Variation of the birefringence1nb for the light propagating along theb axis against
sin2 α0/2nc for the APFA1 walls.

Taking into account the quality of the approximated model as demonstrated previously,
it is possible to use relations, such as (13)–(16), to study the effects of the optical properties
of the crystal on the deflected angles. For example, the influence of theφ angle on theα and
β angles is illustrated in figure 10 for the APFA1 walls: a variation ofφ between 0◦ and 90◦

induces only a modification inα andβ values of the order of, in general, about 1%. Then, it is
interesting to correlate the deflected angle with the optical indices. A very simple experimental
case is given by the measurement of the angleα with αi = 0. Using relation(13) it is easy to
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write:

sin2 α0 = 2nc1nb +1n2
b

1− 3tg3φ

1 + tg2φ
+ 4
1n3

b

ny

tg2φ(tg2φ − 1)

(1 + tg2φ)2
+ ε (17)

or if the birefringence1nb = na − nc for the light propagating along theb-axis is small

sin2 α0 = 2nc1nb + ε′ (18)

with the ε andε′ functions ofny , φ and1npb (the exponentp is at least four in (17) and
two in (18)). Relation (18) is well illustrated by figure 11, which shows the quasi-linear
dependence between sin2 α0 and the birefringence1nb. This result is very conclusive because
the intensities of the deflected beams in APFA are relatively small (a few per cent of the incident
beam, or less) and the divergence of these beams change with temperature.

5. Conclusion

The deflected beams, A and B, have been studied in APFA against the angle of the incident
beamαi , especially from the point of view of the deflected angle and light polarization. This
study presents two different situations. In the first (the APFA1 case) the incidence plane is
far away from the optical principal plane containing the optical axis: A and B beams are
always clearly separated asαi varies and their polarizations are almost perpendicular, without
noticeable variation. In contrast in the APFA2 case, the incidence plane is close to the optical
axis. Forαi = 35–36◦, the A and B beams are close to each other and their polarizations,
which are always approximately perpendicular, are exchanged. That proves the vicinity to the
optical axis as illustrated in figures 3, 4 and 6. Then it is possible in the situation described
in figure 1(a), to easily obtain information on a biaxial crystal as shown in figure 6. A
general model allows us to numerically calculate the orientations of theEk wave vectors and
the light polarizations which correspond to the deflected beams. It is also possible to obtain
analytical relationsα(αi, φ, ni) andβ(αi, φ, ni) assuming that the intersections between the
index surfaces and the incident plane are ellipses. This approximated model gives results that
are in good agreement with the experimental data and with the results calculated in general
case if the birefringence is not greater than 10−2. The relations, such as (13)–(16), can be
written in all crystals and the following paper (Staniorowski and Bornarel 2000), concerning
GMO crystals, demonstrates the better accuracy of this numerical approach compared to the
Huygens construction. An important result is analytically and experimentally demonstrated
on the variation ofα andβ as a function of the optical properties of the crystal: the tilt angle
φ does not play a significant role and sin2 α0 is, with a good accuracy, proportional to the
birefringence for a light propagating in the crystal axis parallel to the normal incident beam
(αi = 0◦). Thus, it is interesting to study the transitions and the domains in ferroelastic
crystals: the birefringence is easily measured by classical methods when the sample exhibits
only a few domains. However, this measurement becomes difficult for dense domain textures.
The deflection can supply the classical techniques in the situation of twinned crystals. This
can also be useful in such applications as electromodulators. APFA is not a good case for
such applications because the deflected beams have small intensities. Other crystals seem
more promising (Salvestriniet al 1997, Guilbertet al 1998). In all cases, the intensities of
the deflected beams must be now studied: not only the effect of the optical properties of the
crystal and of the light polarization and the wave length, but also the relative importance of
the deflection phenomenon and diffraction phenomena.
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